基本信息
更多>>
产品展示
| 产品名称: | 6ES5392-A11 |
| 浏览量: | ![]() |
| 价格: | 66 |
| 供货总量: | 32 |
| 规格: | 6ES5392-5AA11 |
| 更新日期: | 2018年12月24日,有效期:360天 |
| 关键字: | 6ES5392A11 6ES5392A11 6ES5392A11 |
| 联系人: | ![]() |
| 联系电话: | ![]() |
| 即时通讯: | ![]() |
详情信息
现今的可调速驱动电路都采用变频器来调整输出电流,以满足三相马达的要求。变频器的形状大小通常会受到应用的限制。在许多情况下,电路板与马达靠得很近,而马达构造的高度也会受限。另外,所用高功率半导体器件的物理性质和所选封装的形状,也要求电路板上有足够的位置空间。功率半导体开关工作期间产生的电压、电流交叠会造成损耗,必须将其消除。虽然功率耗散问题可以通过加设散热片而得到改善,但这也会限制半导体器件在电路板上的布局安排。
变频器是达到EcoDesign节能要求的关键技术。美国电力科学研究院(ElectricPowerResearchInsTItute)的研究表明,采用变频器的马达比无变频器的马达节能多达40%。无论是感应马达、永磁同步马达,还是无刷直流马达,都可由变频器为其产生正弦电流。为此,开关频率必须比变频器的可调输出频率高几个数量级。而经脉冲宽度调制的输出电压则会施加在电感性负载上。因此,输出电流与电压的平均值成正比。开关频率越高,对变频器越有利;而驱动的扭矩波动越小,动态响应性能便更高,噪声也会变得更低。这就要求开关速率快,而开关速率快意味着di/dt和dv/dt的变化率通常都很高。因此,电路寄生就成为一个大问题,设计人员必须努力解决这个问题,才能满足目前和未来的EMC标准要求。
目前,大功率半导体器件(如IGBT和MOSFET)的发展趋势是在提升性能的前提下不断缩小芯片尺寸。减小芯片尺寸能减少器件的寄生电容,从而提高开关速率。因此,深入研究电路板上的关键回路越来越重要。图1为电压源变频器(voltagesourceinverter,VSI)的两种典型开关工作方式的简化示意电路。在开关频率受限的大电流应用中,IGBT是的器件。上图所示为从高压侧(HS)续流二极管到低压侧IGBT的换流。电流初是在高压侧二极管和相应反相半桥的IGBT形成的续流通道中。
一旦低压侧栅极驱动电路导通了IGBT,就会有短路电流经过高压侧二极管和低压侧IGBT。其结果是二极管电流降低,IGBT电流相应增加(自然换相:1〜2),在开关期间,电感性负载的电流可视为常数。因此,杂散部件与该通道无关。开关速率由低压侧IGBT的导通和半桥的杂散电感来决定。要实现从低压侧IGBT到高压侧续流二极管的反向换流,低压侧IGBT上的压降必须大于直流总线电压,以导通续流二极管。因此,IGBT在与二极管换流(强制换相:2〜1)之前必须能同时承受高电压和大电流。


